Graphing Calculator Online | Function, Equation, Parametric, Point

Use this free online graphing calculator to plot functions, equations (including implicitly defined functions), parametric curves (also known as parametric equations), and points in both Cartesian and polar coordinate systems. Easily find the x-intercepts of function graphs, and compute and graph symbolic derivatives of functions and parametric expressions.

Quick start

Tips - As you type:

More tips

About the Graphing Calculator

Our online graphing calculator is a sophisticated, feature-rich, and user-friendly tool for graphing functions, equations, parametric curves, or points in the user's chosen Cartesian or polar coordinate system.

The graphing calculator also effortlessly determines x-intercepts (also known as zeros or roots) of a function and computes symbolic derivatives up to the second order for both functions and parametric equations.

Unique Features of the Graphing Calculator

To enhance the understanding of how graphs of functions are created in the polar coordinate system, as well as graphs of parametric equations in both Cartesian and polar coordinate systems, our graphing calculator utilizes a sophisticated and unique interactive animation method to progressively draw these types of graphs automatically, step by step. This is a tremendously useful feature for visualizing their graphs as they are being plotted. It also offers full control over animation, allowing users to run, pause, resume, and adjust the animation speed through a convenient and intuitive interface.

It is also unique in its ability to visualize graphs in a parallelogrammatic coordinate system (oblique coordinate systems—non-orthogonal Cartesian and generalized polar coordinate systems)—where axes can be rotated and intersect at any angle. These features provide an interactive way to explore and understand graphing in non-standard coordinate systems.

Interested in calculating higher order derivatives and partial derivatives of multi-variable functions? If so, try our Derivative Calculator.

x y
message
?
 
4
Label Axes

Translate Origin

Rotate Axes

ResultsHide
Functions

Lines

1 x+1 2x

Semi-circles

√(9-x^2) -√(9-x^2)

Semi-ellipses

√(9-x^2/3) √(9-x^2/3)

Parabolas

x^2 0.5x^2-4x+1 -(0.5x^2-4x+1)

Semi-hyperbolas

√(x^2-4) -√(x^2-4)

Other graphs

√(4sin(2x)) √(4cos(2x))
Functions – Polar

Lines

2csc(θ) 2sec(θ) 1/(sin(θ) - cos(θ))

Circles

1 2 6sin(θ) 8cos(θ)

Spirals

θ θ/5 dom=(0, 10π) √(θ) dom=(0, 10π) 1/θ dom=(0, 10π)

Roses

4sin(3θ) 4sin(2θ) 4sin(5θ) 4sin(4θ)

Ellipses

1/(1-.8cos(θ)) 1/(1-.8sin(θ)) 1/(1+.8cos(θ)) 1/(1+.8sin(θ))

Parabolas

1/(1-sin(θ)) 1/(1+cos(θ)) 1/(1+sin(θ)) 1/(1-cos(θ))

Hyperbolas

1/(1+2cos(θ)) 4/(1+2sin(θ)) 1/(1-2cos(θ)) 4/(1-2sin(θ))

Cardioids

3+3cos(θ) 2+2sin(θ) 3-3cos(θ) 2-2sin(θ)

Limacons

2+3cos(θ) 1+2sin(θ) 2-3cos(θ) 1-2sin(θ)

Lemniscates

√(4sin(2θ)) √(4cos(2θ))

Butterfly curve

e^sin(θ)-2cos(4θ)+sin((2θ-π)/24)^5 dom=(0, 12π)
Equations

Lines

y = 1 x = 1 y = x+1 x = y+1 3x + y = 2 3x - y +5 = 4x+2y-2

Circles

x^2+y^2 = 9 (x-2)^2 + (y-2)^2 = 4

Ellipses

x^2/4 + y^2/9 = 1 x^2-xy+2y^2-x-2y-8=0

Parabolas

y=x^2 y = x^2-4x+4 2x^2-4xy+2y^2-x-2y-2=0

Hyperbolas

x^2/4 - y^2/9 = 1 2x^2-5xy-4y^2+9x+9y-16=0

Other graphs

x^2 = y^2 sin(xy) = cos(xy)
Equations — Polar
Currently, not available.
Parametric

Lines

[t, 1] dom=(-5, 5) [1,t] dom=(-5, 5) [t, 2t] dom=(-5, 5)

Circles

[4sin(t), 4cos(t)] [3sin(t)+1, 3cos(t)+1]

Ellipses

[4cos(t), 3sin(t)] [3cos(t), 4sin(t)] [4sin(t), 3cos(t)] [3sin(t), 4cos(t)]

Parabolas

[t, t^2] dom=(-4, 4) [t^2, t] dom=(-4, 4)

Hyperbolas

[3sec(t), 4tan(t)] [3tan(t), 4sec(t)]

Other parametric graphs

[5sin(t), 4cos(t)] [5sin(t), 4cos(2t)] [5sin(t), 4cos(3t)] [5sin(2t), 4cos(t)] [5sin(2t), 4cos(3t)] [5sin(2t), 4cos(5t)] [5sin(3t), 4cos(5t)] [5sin(3t), 4cos(7t)] [5sin(5t), 4cos(7t)] [5sin(7t), 4cos(9t)]

Butterfly curve

[sin(t)(e^cos(t)-2cos(4t)-sin(t/12)^5), cos(t)(e^cos(t)-2cos(4t)-sin( t/12 )^5)] dom=(0, 12π)
Parametric – Polar

Lines

[2csc(t), t] [2sec(t), t] [1/(sin(t) - cos(t)), t]

Circles

[1, t] [2, t] [6sin(t), t] [8cos(t), t]

Spirals

[t, t] [t/5, t] dom=(0, 10π) [√(t), t] dom=(0, 10π) [1/t, t] dom=(0, 10π)

Roses

[4sin(3t), t] [4sin(2t), t] [4sin(5t), t] [4sin(4t), t]

Ellipses

[1/(1-.8cos(t)), t] [1/(1-.8sin(t)), t] [1/(1+.8cos(t)), t] [1/(1+.8sin(t)), t]

Parabolas

[1/(1-sin(t)), t] [1/(1+cos(t)), t] [1/(1+sin(t)), t] [1/(1-cos(t)), t]

Hyperbolas

[1/(1+2cos(t)), t] [4/(1+2sin(t)), t] [1/(1-2cos(t)), t] [4/(1-2sin(t)), t]

Cardioids

[3+3cos(t), t] [2+2sin(t), t] [3-3cos(t), t] [2-2sin(t), t]

Limacons

[2+3cos(t), t] [1+2sin(t), t] [2-3cos(t), t] [1-2sin(t), t]

Lemniscates

[√(4sin(2t)), t] [√(4cos(2t)), t]

Other parametric graphs

[5sin(t), 4cos(t)] [5sin(t), 4cos(2t)] [5sin(t), 4cos(3t)] [5sin(2t), 4cos(t)] [5sin(2t), 4cos(3t)] [5sin(2t), 4cos(5t)] [5sin(3t), 4cos(5t)] [5sin(3t), 4cos(7t)] [5sin(5t), 4cos(7t)] [5sin(7t), 4cos(9t)]
RAD
🔍+ 1 🔍
graphing time (s)

Calculator is loading.
Please wait....

Graph Thickness
Angle Mode
...
Done

To copy or save graphs right click on the image of a saved graph below and select "Copy image" or "Save image" from the pop-up menu.

Instructions for using the Graphing Calculator

MouseMatics: Find out how to use your mouse to rotate axes, change scales, and translate the origin.

Entering Expressions into Graphing Calculator

The graphing calculator is designed to be intelligent and user-friendly. When you enter an expression, it detects its type and internally adjusts the variables accordingly (to see the adjustments, just hover your mouse over the expression type label above the relevant input box):

Note: When graphing functions or parametric expressions, if you don't specify a domain (interval), the graphing calculator automatically selects a suitable domain for accurate plotting. The default domains are:

Users can modify the endpoints of the interval as needed. However, for polar or parametric graphing, the endpoints must be finite. If infinite values are entered, the calculator automatically adjusts them to finite values.

Specific Applications of the Graphing Calculator

Beyond general expression, this graphing calculator allows you to:

Append new panel(s) at the bottom of the multi-input pane for: