About the Parametric Equations Grapher
Our parametric equations grapher (aka parametric curve grapher) draws parametric curves represented by p(t) = [f(t),g(t)] in both Cartesian and polar coordinate systems.
When graphing in the Cartesian coordinate system, this is typically expressed as p(t) = [x(t),y(t)] and in the polar coordinate system as p(t) = [r(t),θ(t)]
Unique Cartesian & Polar Parametric Grapher
Our Cartesian and polar parametric equations grapher uses a unique and easy-to-follow animation algorithm to illustrate how Cartesian and polar parametric graphs are drawn. This capability lets you to clearly visualize the construction of parametric curves from beginning to end.
Additionally, our parametric grapher allows you to run, pause, and resume the animation and easily control the speed of the parametric curve graphing process.
By default, parametric expressions are graphed in the Cartesian coordinate system. That is, for each t, the components of ordered pairs [f(t),g(t)] will be treated as Cartesian coordinates—typically represented as [x(t),y(t)].
However, simply select the Polar checkbox, and our parametric grapher will seamlessly switch to its built-in polar coordinate system. This means for each t, the components of ordered pairs [f(t),g(t)] will be treated as polar coordinates—typically represented as [r(t),θ(t)]—and graphed accordingly.
Besides being the first ever polar parametric grapher available online, it also has the unique feature of rotating radial axes when constructing polar parametric curves from scratch.
Additionally, this parametric graphing calculator allows you to rotate axes and graph parametric equations in oblique coordinate systems, where axes can be rotated to any angle and have any orientation.
Try our Graphing Calculator, which in addition to graphing parametric equations can graph functions, equations containing variables on both sides, including implicit functions, and points.
Lines
[t, 1] dom=(-5, 5) [1,t] dom=(-5, 5) [t, 2t] dom=(-5, 5)Circles
[4sin(t), 4cos(t)] [3sin(t)+1, 3cos(t)+1]Ellipses
[4cos(t), 3sin(t)] [3cos(t), 4sin(t)] [4sin(t), 3cos(t)] [3sin(t), 4cos(t)]Parabolas
[t, t^2] dom=(-4, 4) [t^2, t] dom=(-4, 4)Hyperbolas
[3sec(t), 4tan(t)] [3tan(t), 4sec(t)]Other parametric graphs
[5sin(t), 4cos(t)] [5sin(t), 4cos(2t)] [5sin(t), 4cos(3t)] [5sin(2t), 4cos(t)] [5sin(2t), 4cos(3t)] [5sin(2t), 4cos(5t)] [5sin(3t), 4cos(5t)] [5sin(3t), 4cos(7t)] [5sin(5t), 4cos(7t)] [5sin(7t), 4cos(9t)]Butterfly curve
[sin(t)(e^cos(t)-2cos(4t)-sin(t/12)^5), cos(t)(e^cos(t)-2cos(4t)-sin( t/12 )^5)] dom=(0, 12π)Lines
[2csc(t), t] [2sec(t), t] [1/(sin(t) - cos(t)), t]Circles
[1, t] [2, t] [6sin(t), t] [8cos(t), t]Spirals
[t, t] [t/5, t] dom=(0, 10π) [√(t), t] dom=(0, 10π) [1/t, t] dom=(0, 10π)Roses
[4sin(3t), t] [4sin(2t), t] [4sin(5t), t] [4sin(4t), t]Ellipses
[1/(1-.8cos(t)), t] [1/(1-.8sin(t)), t] [1/(1+.8cos(t)), t] [1/(1+.8sin(t)), t]Parabolas
[1/(1-sin(t)), t] [1/(1+cos(t)), t] [1/(1+sin(t)), t] [1/(1-cos(t)), t]Hyperbolas
[1/(1+2cos(t)), t] [4/(1+2sin(t)), t] [1/(1-2cos(t)), t] [4/(1-2sin(t)), t]Cardioids
[3+3cos(t), t] [2+2sin(t), t] [3-3cos(t), t] [2-2sin(t), t]Limacons
[2+3cos(t), t] [1+2sin(t), t] [2-3cos(t), t] [1-2sin(t), t]Lemniscates
[√(4sin(2t)), t] [√(4cos(2t)), t]Other parametric graphs
[5sin(t), 4cos(t)] [5sin(t), 4cos(2t)] [5sin(t), 4cos(3t)] [5sin(2t), 4cos(t)] [5sin(2t), 4cos(3t)] [5sin(2t), 4cos(5t)] [5sin(3t), 4cos(5t)] [5sin(3t), 4cos(7t)] [5sin(5t), 4cos(7t)] [5sin(7t), 4cos(9t)]Calculator is loading.
Please wait....
To copy or save graphs right click on the image of a saved graph below and select "Copy image" or "Save image" from the pop-up menu.
Instructions for Using the parametric equations grapher
Tips - as you type:
- pi is replaced by π.
MouseMatics: Find out how to use your mouse to rotate axes, change scales, and translate coordinate systems.