Graphing Calculator with Derivatives

Welcome to our world's most advanced free online graphing calculator, ideal for graphical representations of mathematical expressions — functions, equations, parametric curves, and point sets. It can also find x-intercepts, calculate and graph symbolic derivatives, and graph in oblique coordinate systems.

This online graphing calculator is a sophisticated and feature-rich graphing software application for drawing the graphs of functions, equations (including implicitly defined functions), parametric curves and points in the Cartesian and polar coordinate systems.

Here are some examples of syntax:
  • f(x) = x^2sin(x) + 2x + 1 (function)
  • x^3-xy+2y^2 = 5x+2y+5 (equation)
  • p(t) = [sin(t), cos(t)] (parametric)
  • 1,2; -2, 2/3; sin(π/3), 2^3-1 (points)
More on Syntax

It can easily find the roots of a function (also known as zeros or x-intercepts), and also calculate symbolic derivatives of functions and parametric curves and graph the derivatives.

This graphing calculator has features that enable you to animate the graphing process in a unique way that helps you understand it better. It is also unique in its ability to visualize graphs in an oblique coordinate system where each axis can be rotated independently. These features provide an interactive way to learn about graphing.

In particular, you can use this graphing calculator to:

  • Graph linear functions and linear equations in point-slope form and slope-intercept form.
  • Graph conic sections in the standard form such as (x-h)^2 + (y-k)^2 = r^2, and the general form (Ax^2 + Bxy + Cy^2 - Dx + Ey + F = 0), which can be a circle, ellipse, parabola, hyperbola, or some degenerated graphs.
  • Graph level curves, which are in the form F(x,y) = c.
  • Solve equations to find x-intercepts (zeros or roots) of a given function.
  • Calculate and graph the symbolic derivatives of the 1st and 2nd order of a given function or parametric expression.
x y
message
?
 
4
Label Axes

Rotate Axes

ResultsHide
Functions

Lines

1 x+1 2x

Semi-circles

√(9-x^2) -√(9-x^2)

Semi-ellipses

√(9-x^2/3) √(9-x^2/3)

Parabolas

x^2 0.5x^2-4x+1 -(0.5x^2-4x+1)

Semi-hyperbolas

√(x^2-4) -√(x^2-4)

Other graphs

√(4sin(2x)) √(4cos(2x))
Functions – Polar

Lines

2csc(θ) 2sec(θ) 1/(sin(θ) - cos(θ))

Circles

1 2 6sin(θ) 8cos(θ)

Spirals

θ θ/5 dom=(0, 10π) √(θ) dom=(0, 10π) 1/θ dom=(0, 10π)

Roses

4sin(3θ) 4sin(2θ) 4sin(5θ) 4sin(4θ)

Ellipses

1/(1-.8cos(θ)) 1/(1-.8sin(θ)) 1/(1+.8cos(θ)) 1/(1+.8sin(θ))

Parabolas

1/(1-sin(θ)) 1/(1+cos(θ)) 1/(1+sin(θ)) 1/(1-cos(θ))

Hyperbolas

1/(1+2cos(θ)) 4/(1+2sin(θ)) 1/(1-2cos(θ)) 4/(1-2sin(θ))

Cardioids

3+3cos(θ) 2+2sin(θ) 3-3cos(θ) 2-2sin(θ)

Limacons

2+3cos(θ) 1+2sin(θ) 2-3cos(θ) 1-2sin(θ)

Lemniscates

√(4sin(2θ)) √(4cos(2θ))

Butterfly curve

e^sin(θ)-2cos(4θ)+sin((2θ-π)/24)^5 dom=(0, 12π)
Equations

Lines

y = 1 x = 1 y = x+1 x = y+1 3x + y = 2 3x - y +5 = 4x+2y-2

Circles

x^2+y^2 = 9 (x-2)^2 + (y-2)^2 = 4

Ellipses

x^2/4 + y^2/9 = 1 x^2-xy+2y^2-x-2y-8=0

Parabolas

y=x^2 y = x^2-4x+4 2x^2-4xy+2y^2-x-2y-2=0

Hyperbolas

x^2/4 - y^2/9 = 1 24x^2-50xy-49y^2+97x+93y-164=0

Other graphs

x^2 = y^2 sin(xy) = cos(xy)
Equations — Polar
Currently, not available.
Parametric

Lines

[t, 1] dom=(-5, 5) [1,t] dom=(-5, 5) [t, 2t] dom=(-5, 5)

Circles

[4sin(t), 4cos(t)] [3sin(t)+1, 3cos(t)+1]

Ellipses

[4cos(t), 3sin(t)] [3cos(t), 4sin(t)] [4sin(t), 3cos(t)] [3sin(t), 4cos(t)]

Parabolas

[t, t^2] dom=(-4, 4) [t^2, t] dom=(-4, 4)

Hyperbolas

[3sec(t), 4tan(t)] [3tan(t), 4sec(t)]

Other parametric graphs

[5sin(t), 4cos(t)] [5sin(t), 4cos(2t)] [5sin(t), 4cos(3t)] [5sin(2t), 4cos(t)] [5sin(2t), 4cos(3t)] [5sin(2t), 4cos(5t)] [5sin(3t), 4cos(5t)] [5sin(3t), 4cos(7t)] [5sin(5t), 4cos(7t)] [5sin(7t), 4cos(9t)]

Butterfly curve

[sin(t)(e^cos(t)-2cos(4t)-sin(t/12)^5), cos(t)(e^cos(t)-2cos(4t)-sin( t/12 )^5)] dom=(0, 12π)
Parametric – Polar

Lines

[2csc(t), t] [2sec(t), t] [1/(sin(t) - cos(t)), t]

Circles

[1, t] [2, t] [6sin(t), t] [8cos(t), t]

Spirals

[t, t] [t/5, t] dom=(0, 10π) [√(t), t] dom=(0, 10π) [1/t, t] dom=(0, 10π)

Roses

[4sin(3t), t] [4sin(2t), t] [4sin(5t), t] [4sin(4t), t]

Ellipses

[1/(1-.8cos(t)), t] [1/(1-.8sin(t)), t] [1/(1+.8cos(t)), t] [1/(1+.8sin(t)), t]

Parabolas

[1/(1-sin(t)), t] [1/(1+cos(t)), t] [1/(1+sin(t)), t] [1/(1-cos(t)), t]

Hyperbolas

[1/(1+2cos(t)), t] [4/(1+2sin(t)), t] [1/(1-2cos(t)), t] [4/(1-2sin(t)), t]

Cardioids

[3+3cos(t), t] [2+2sin(t), t] [3-3cos(t), t] [2-2sin(t), t]

Limacons

[2+3cos(t), t] [1+2sin(t), t] [2-3cos(t), t] [1-2sin(t), t]

Lemniscates

[√(4sin(2t)), t] [√(4cos(2t)), t]

Other parametric graphs

[5sin(t), 4cos(t)] [5sin(t), 4cos(2t)] [5sin(t), 4cos(3t)] [5sin(2t), 4cos(t)] [5sin(2t), 4cos(3t)] [5sin(2t), 4cos(5t)] [5sin(3t), 4cos(5t)] [5sin(3t), 4cos(7t)] [5sin(5t), 4cos(7t)] [5sin(7t), 4cos(9t)]
RAD
🔍+ 1 🔍

Calculator is loading.
Please wait....

Make this Transparent
Graph Thickness
Angle Mode
...
Done

To copy or save graphs right click on the image of a saved graph below and select "Copy image" or "Save image" from the pop-up menu.

Instruction

MouseMatics: Learn how you can use your mouse to rotate axes, change scales, and move coordinate system.

Find out more about coordinate systems, graphs of functions and graphs of parametric equations.

Insert on the bottom of multi-input panel: